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The general purpose of this paper is to investigate some consequences of the random-
ness of the velocities of interacting rigid particles falling under gravity through viscous
fluid at small Reynolds number. Random velocities often imply diffusive transport
of the particles, but particle diffusion of the conventional kind exists only when the
length characteristic of the diffusion process is small compared with the distance
over which the particle concentration is effectively uniform. When this condition
is not satisfied, some alternative analytical description of the dispersion process is
needed. Here we suppose that a dilute dispersion of sedimenting particles is bounded
externally by pure fluid and enquire about the rate at which particles make outward
random crossings of the (imaginary) boundary. If the particles are initially distributed
with uniform concentration within a spherical boundary, we gain the convenience
of approximately steady conditions with a velocity distribution like that in a falling
spherical drop of pure liquid. However, randomness of the particle velocities causes
some particles to make an outward crossing of the spherical boundary and to be
carried round the boundary and thence downstream in a vertical ‘tail’. This is the
nature of break-up of a falling cloud of particles.

A numerical simulation of the motion of a number of interacting particles (max-
imum 320) assumed to act as Stokeslets confirms the validity of the above picture
of the way in which particles leak away from a spherical cluster of particles. A
dimensionally correct empirical relation for the rate at which particles are lost from
the cluster involves a constant which is indeed found to depend only weakly on the
various parameters occurring in the numerical simulation. According to this relation
the rate at which particles are lost from the blob is proportional to the fall speed of
an isolated particle and to the area of the blob boundary. Some photographs of a
leaking tail of particles in figure 5 also provide support for the qualitative picture.

1. Introduction
It is a feature of flowing dispersions of particles suspended in viscous fluid (normally

a liquid) that the particles make random displacements arising from hydrodynamic
interactions with their neighbours, and that these displacements generate stochastic
particle trajectories. This process of hydrodynamic dispersion has an origin entirely
distinct from that of the Brownian diffusion of very small particles (which respond
dynamically to collisions with molecules of the surrounding solvent), and it occurs
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with comparatively large particles for which Brownian agitation may be negligible as
a force causing transport. The investigation of hydrodynamic dispersion of interacting
spherical particles normal to the streamlines of an annular Couette flow by Eckstein,
Bailey & Shapiro (1977) appears to have been the first in an essentially new field. Since
then considerable experimental and theoretical work has addressed hydrodynamic
diffusion of particles undergoing bulk shear flow or sedimentation. (See Davis 1996
for a report on the developments presented at an international symposium in 1995.)

Many of these studies have been restricted to dispersions in which the particle
concentration is uniform or is a slowly varying function of position. In these
circumstances it may be possible to define a hydrodynamic diffusivity of the particles
as the particle flux divided by the concentration gradient. In some other cases,
however, there is a jump in the value of the particle concentration across an interface.
In these circumstances a diffusivity defined as the ratio of the particle flux to the
concentration gradient does not have physical meaning. Transfer of particles due to
velocity fluctuations still occurs, but is not describable in terms of a diffusivity, just as
one would not expect the continuum equations for diffusion of a gas to be applicable
when – as in the interior of a shock wave for instance – the characteristic length scale
of the diffusive process is not small compared with distances over which the particle
concentration is effectively uniform.

We shall present a numerical investigation of hydrodynamic dispersion in a system
containing an interface which separates a random dispersion of prescribed particle
concentration on one side from clear fluid on the other side. Specifically, we consider
the motion under gravity of particles within a blob (a convenient term for a finite
volume of a dispersion of particles in liquid) comprising a large number N of
particles initially distributed randomly in liquid with uniform mean concentration
within a prescribed closed surface, and inquire as to its subsequent time evolution.
The particles will tend to spread out from each other, and questions of interest are
therefore: do particles leave the blob, and if so how, and what is the lifetime of the
blob as a cohesive entity? A spherical blob shape is especially well suited to a study
of random particle migration across interfaces because the gravity-driven flow system
maintains essentially constant form. Thus, the migration process can be observed
without the complication of significant deformation of the blob as a whole. As noted
above, it is not possible to specify the flux of particles across such an interface in
terms of a particle diffusivity of the conventional kind. Some alternative analytical
description of the dispersion process at the interface is required.

Insofar as the blob can be regarded as an effective continuum having a density
higher than that of the surrounding clear fluid, the flow system under consideration
is closely related to the fall of a drop of heavy fluid through an infinite expanse of
lighter fluid, for which the velocity field is given – in the case of a spherical blob –
by well-known formulae (Batchelor 1967) attributed to Hadamard and Rybczyński
(designated here as H-R). A spherical blob containing particles possesses the addi-
tional physical feature that the suspended particles, which contribute excess mass to
the blob, fall relative to the fluid in which they are immersed. A generalization of the
H-R solution appropriate to this circumstance has been given in another context by
Batchelor (1974), who found that a low-Reynolds-number spherical sedimenting drop
may carry with it a circulating ‘halo’ of clear fluid, and that the compound structure
as a whole may fall without change of form.

The sequence of problems considered may thus be described as follows: (i) the H-R
solution refers to a spherical drop of viscous fluid falling through a second viscous
fluid of smaller density; (ii) the Batchelor (1974) solution refers to a spherical drop
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containing small dispersed particles assumed to fall with uniform speed relative to
the fluid locally; and (iii) in the problem studied herein the particle velocities vary
randomly as a consequence of particle interactions, and the particles disperse.

Our consideration of the dispersion of particles in a blob also has elements in
common with some previous experimental studies of the break-up of particulate
blobs in simple shear and extensional flows (Kao & Mason 1975; Powell & Mason
1982). Despite the differences between externally imposed shear and gravity-driven
flow, we shall find that the rates at which particles leave the blob are correlated by
similar mass-transfer expressions in these two cases.

Our paper is organized as follows. Section 2 formulates the equations governing
the particle and fluid motions, and identifies restrictions on the circumstances to
which these equations apply. The equations of motion are solved numerically in
§3 to determine the time evolution of the blob, and, in particular, to quantify the
outward flux of particles across its boundary. An empirical correlation for this flux is
introduced and discussed in §4. Section 5 describes some experimental observations
related to the calculations.

2. Governing equations for the particles and fluid
We suppose that initially N spherical particles of radius a and density ρp are

distributed randomly and with uniform mean concentration within a spherical region
of radius R in an infinite expanse of fluid having density ρ and viscosity µ. The
particles move under the influence of gravity and the viscous resistance exerted by
the fluid, and our immediate objective is to formulate the equations governing their
motions.

The terminal settling velocity of an isolated particle will be denoted by u0, and we
shall suppose that the particle Reynolds number Re = 2aρu0/µ is small, in which
case u0 has the Stokes value 2a2(ρp − ρ)g/9µ. We shall also suppose that the Stokes
number S = τu0/R (representing the ratio of the viscous relaxation time τ = m/6πµa
of a particle to the time needed for it to fall the relevant distance R) is small, so that
the effects of particle inertia are negligible. Under these circumstances the equation
of motion for particle i takes the form

dxi/dt = vi, 0 = −(m− m0)gk + hi + fi, (2.1)

where m = 4πa3ρp/3 denotes the mass of a particle, m0 the mass of fluid displaced
by a particle, k the unit vector pointing upwards, g the gravitational acceleration,
hi the total hydrodynamic force exerted by all particles k (k 6= i) upon particle i,
and fi any additional force exerted upon particle i. The hydrodynamic force hi is
given by the solution for Stokes flow in a system with N torque-free rigid spherical
boundaries centred at the points xi moving with velocities vi. The present flow system
is unusual in the respect that, even though there is no imposed ambient flow, the forces
−(m − m0)gk collectively generate a systematic flow (namely, a toroidal circulation
essentially identical to that in a falling drop – see below). The Reynolds number of
this collective motion is also assumed to be small. The additional force fi is zero
for particles moving solely under the influence of gravity and the viscous resistance
exerted by the fluid.

Exact representation of the particle interactions would require the solution of the
N-body Stokes-flow problem, which is inaccessible analytically and time-consuming
to calculate accurately if N is large (cf. Kim & Karrila 1991). Our primary focus
is on dilute dispersions, for which the typical interparticle spacing |xi − xj | is much
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larger than a. In this limit it is appropriate to approximate the fluid velocity as a
superposition of Stokeslet disturbances. The hydrodynamic forces approximated on
this basis and denoted by h′i are given by expressions of the form

h′i = −6πµa(vi − ui), (2.2)

where ui denotes the ambient fluid velocity evaluated at the position of particle i. The
ui are calculable from the equations

ui =
∑
j 6=i

w(xi; xj) · 6πµa(vj − uj) (i = 1, . . . N), (2.3)

in which w(x; x0) denotes the Stokeslet tensor with singularity at x0. Equation (2.3)
expresses the fact that each ambient velocity ui is a superposition of point-force
disturbances ui arising from the gravitational slip of particles relative to the fluid.
It can be shown that equations (2.2) and (2.3) are valid approximately in the sense
that for prescribed particle velocities vi, the forces h′i approximate the true forces hi
correctly up to second order in a/|xi−xj |. In general, for prescribed vi, equation (2.3)
represents a system of linear equations for the ui requiring simultaneous solution.
Under the present circumstances, however, the local slip velocities vi − ui are known
a priori from the force balance in (2.1).

Our truncation of the multipole expansion for the fluid velocity after the first order
(equations (2.2) and (2.3)) represents a simple approximation that does not prevent
particles from overlapping. Overlaps may produce an unrealistically large settling
speed of a pair of particles, because if the centre-to-centre distance happens to be
very small then, according to equation (2.3), each particle induces a large ambient
fluid velocity at the position of the other. This phenomenon may, in turn, lead to
unrealistically large velocity fluctuations.

Overlaps can, in principle, be prevented from occurring in the mathematical model
by pairwise consideration of the particle interactions in the following way. For each
particle i the nearest neighbour (particle k, say) is identified, and the ambient velocity
ûi incident upon both i and k is computed by excluding j = k from the summation in
(2.3):

ûi =
∑
j 6=i,k

w(xi; xj) · 6πµa(vj − uj). (2.4)

Thereafter, an improved approximation h′′i to the hydrodynamic force hi is calculable
from the equation

h′′i = −µK ii · (vi − ûi)− µK ik · (vk − ûi), (2.5)

in which K ii and K ik denote the well-known two-sphere resistance dyadics giving
the force on particle i due to translation of particle i and particle k, respectively
(see Kim & Karrila 1991). Equations (2.4) and (2.5) are consistent with the Stokeslet
approximation in the sense that, if particle i is far from all other particles (|xi−xj | � a
for all j 6= i), then h′′i reduces to h′i. Equation (2.5) is similar to the pairwise addition
of near-field hydrodynamic forces in ‘Stokesian dynamics’ simulations (see e.g. Brady
& Bossis 1988). Unfortunately, it seems in practice that prohibitively small time steps
are needed to prevent overlaps by this method (cf. Bossis & Brady 1984; Durlofsky
& Brady 1989).

We have therefore resorted to the expedient of staying with the simple hydro-
dynamic approximation embodied in equations (2.2) and (2.3), and introducing in
equation (2.1) an artificial short-range repulsive force acting between all pairs of
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particles, namely

fi =
∑
j 6=i

C16πµau0

xi − xj
|xi − xj |

exp

(
−|xi − xj | − 2a

C2a

)
. (2.6)

Here C1 and C2 are parameters determining the strength and range of the repulsive
force, and are usually set to the reasonable but arbitrary numerical values of 10 and
0.1, respectively. Introduction of an extra repulsive force to prevent overlaps (cf. e.g.
Da Cunha 1994) is not unrealistic because forces acting between particles in nature
and in laboratory practice are often repulsive.

We emphasize that our purpose here is not to perform detailed calculations of
particle interactions. Rather, we aim to explore the physical processes giving rise to
dispersion and its consequences. Our ultimate conclusion (see below) that Stokeslet
interactions suffice for the production of random particle migration across an interface
is significant, because it represents an identification of the minimum physics needed to
reproduce this phenomenon. Our use of equations (2.2)–(2.3) is therefore not merely
expedient, but also serves to reveal this important conclusion.

It is advantageous now to introduce the dimensionless variables

X i = R−1xi, T = tu0/R, V i = u−1
0 vi, U i = u−1

0 ui, (2.7)

in terms of which equations (2.1), (2.2), (2.3) and (2.6) become

dX i/dT = V i, 0 = −k − (V i −U i) + F i, (2.8)

U i =
∑
j 6=i

W (X i;X j) · 6πε(V j −U j), (2.9)

with ε = a/R,

W (X ;X 0) =
1

8π

[
I

|X − X 0|
+

(X − X 0)(X − X 0)

|X − X 0|3

]
(2.10)

and

F i =
∑
j 6=i

C1

X i − X j

|X i − X j |
exp

(
−|X i − X j |ε−1 − 2

C2

)
. (2.11)

3. Time evolution of the blob
For any given number of particles N, equations (2.8)–(2.11) constitute a dimen-

sionless system of 3N coupled first-order nonlinear ODEs, of which the solution is
approximated numerically by fourth-order Runge–Kutta integration. Simulations are
performed with blobs typically comprising N = 80, 160 or 320 particles, and their time
evolution is usually tracked over the time interval 0 6 T 6 10. The initial distribution
of particle centres is random with uniform probability throughout a sphere of unit
radius centred at the origin, with the provision that particle overlaps are excluded.
The initial particle volume fraction is kept small (4% or less) so that the simple
Stokeslet approximation for hydrodynamic interactions is reasonable. A spot check
with 160 particles of relative size ε = 0.05 indicates that halving the time step of
the numerical integration ∆T from 0.001 to 0.0005 leads to changes in the computed
individual particle positions smaller than about 0.02 at time T = 10. We therefore
use a time step ∆T = 0.001 and regard this as yielding adequate convergence of the
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particle paths. Possible random errors resulting from use of a larger time step seem
unlikely to invalidate the computed statistical properties of the blob, even if they
do affect the individual trajectories. We therefore refrain from performing detailed
checks for convergence on all the computed particle paths. (It is worth noting that
the present system appears to be chaotic in the sense that any errors in the computed
particle positions, no matter how slight, seem to be magnified exponentially with time.
Thus, owing to computer round-off and finite accuracy of the numerical integration,
it would be impossible in practice to determine the individual particle positions at
arbitrarily long times.) Computed position coordinates of all the particles are written
to a file at regular intervals in T (usually 0.5, or every 500 time steps), which is
analysed later to extract or compile any desired information. Spot checks indicate
that the particles do not overlap. Since the blob maintains its cohesion and size (see
below), a good estimate of the position X cm of the blob’s centre of mass at each time
T is provided by averaging the position coordinates of all particles having heights not
exceeding that of the lowest particle Z-coordinate by more than a fixed number; this
number should be somewhat greater than the initial diameter (2) to allow for small
random deviations from the spherical shape, and is usually taken to be 3. Particles
are considered to have leaked away from the blob if |X i − X cm| > 2. The overall
conclusions of the analysis are insensitive to the precise numerical criterion according
to which a particle is classified as belonging to the blob or having leaked away, and
our criterion seems to be reasonable.

Figure 1 illustrates the time evolution of a blob as a sequence of ‘snapshots’ in
which the particle positions in three-dimensional space are projected onto a vertical
plane, arbitrarily taken to be the (X,Z)-plane. It may be observed from these
calculations, and other calculations not exhibited, that: (i) a sedimenting blob slowly
loses particles by shedding them sporadically along a vertical line emanating from
the rear; (ii) particles remaining in the blob are distributed randomly and uniformly
throughout its interior at all times; and (iii) the blob remains roughly spherical,
with radius roughly constant at its initial value of unity. It is a conspicuous feature
of the blob that it remains cohesive, maintaining a rather sharp and clearly defined
boundary between its particle-filled interior and the clear fluid outside. This boundary
is not imposed in the calculation, but rather represents an observed outcome of the
dynamical simulation. The volume fraction ϕ = Nb ε

3 of particles in the interior
gradually decreases owing primarily to a decrease in the number of particles (Nb)
and not to any significant increase in its size. In late stages of the settling process,
when few particles remain in the blob, the blob boundary becomes ragged, exhibiting
significant departures from the spherical shape.

Insofar as the discrete particles comprising the blob approximate a continuous
spherical distribution of excess mass, the fall speed Vb of the blob can be approximated
using the H-R expression for a spherical drop of fluid sedimenting through lighter
fluid (see Batchelor 1967, §4.9), namely

(ρ− ρ)gR2

3µ

µ+ µ

µ+ 3
2
µ
,

in which ρ and µ respectively denote the density and viscosity of the clear fluid outside
the blob, and ρ and µ denote the corresponding properties of the dilute suspension
inside. The excess density ρ − ρ is just ϕ(ρp − ρ), where ϕ is the particle volume
fraction Nbε

3. The effect of the particles on the interior viscosity is small (µ ≈ µ)
because ϕ is assumed to be small. The blob fall speed actually exceeds the H-R value
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Figure 1. Sequences of snapshots showing the computed time evolution of falling blobs. Particle
positions are projected onto the (X,Z)-plane, and are referred to axes moving with the computed
centre-of-mass position of the blob (X cm). The dots representing the particles are drawn to scale.
The initial particle volume fraction, ϕ at T = 0, is 0.02 in both cases. (a) Blob initially contains 160
particles of size ε = a/R = 0.05. (b) Blob initially contains 320 particles of size ε = a/R = 0.0397.
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Boundary of region
of closed fluid
streamlines

Blob boundary

Figure 2. Representation of a sedimenting blob as a continuous uniform spherical distribution
of excess mass that slips relative to the ambient fluid owing to gravity. The figure shows fluid
streamlines referred to axes moving downward with the blob at speed Vb, and corresponds to the
parameter values Nb = 160 and ε = 0.05. The region of closed fluid streamlines is bounded by a
spherical surface lying inside the blob boundary.

because the excess density (in the form of finite-size particles) slips relative to the
ambient fluid, with speed roughly equal to the isolated-particle settling velocity u0

ignoring the small (O(ϕ)) hindered settling effect (cf. Batchelor 1972). We therefore
obtain the approximate result

Vb

u0

≈ 6
5
Nbε+ 1, (3.1)

in which the second (slip) term has only a minor effect if Nb is at all large. Table
1 compares values of Vb/u0 predicted by this equation with corresponding values
of the initial blob fall speed determined from the simulations by finite-difference
approximation of the derivative dXcm/dT . The agreement is good, even for relatively
small N (i.e. even when there is a relatively coarse discretization of the excess mass).
Gravitational slip of the excess mass of the blob alters the streamline pattern of the
fluid from that for a spherical fluid drop, shifting the boundary of the region of closed
fluid streamlines to a spherical surface lying a finite distance inside the boundary of
the blob, as shown schematically in figure 2. This compound structure is similar
to that arising in a consideration of low-Reynolds-number bubbles in fluidized beds
(Batchelor 1974).

Figure 3 shows representative curves giving the number N − Nb of particles that
have leaked away from the blob as a function of time T , at intervals of 0.5 in T
from T = 0 to 10. There is a considerable variation among simulations starting from
different realizations of the initial particle distribution, which decreases somewhat as
the number N of particles increases. For each simulation the initial rate of leakage
may be estimated as the slope of a line fitted to the corresponding curve by the
method of least squares. The time interval 0 6 T 6 10 is short enough for the
fractional change in Nb (or ϕ) to be relatively small. Values of −dNb/dT , determined
in this way and averaged over several simulations, are included in table 1 for various
combinations of the initial particle volume fraction and number of particles. A
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Figure 3. The number of particles that have leaked from the blob, N − Nb, as a function
of dimensionless time T . Curves represent numerical simulations starting from three different
realizations of the initial particle distribution. N = 160 in all cases. (a) ε = 0.063 (ϕ = 0.04 at
T = 0). (b) ε = 0.05 (ϕ = 0.02 at T = 0). (c) ε = 0.0397 (ϕ = 0.01 at T = 0).

comparison of the second and third lines of the table suggests that the results are
rather insensitive to the numerical value of the parameter C2 (which determines the
range of the artificial repulsive force preventing particle overlaps) provided it is small.

Figure 4, which shows the trajectories of two particular particles in a representative
simulation, illuminates the mechanism by which the particles leak away from the
blob. Circulatory motion, expected in view of the well-known toroidal flow inside a
sedimenting spherical drop of liquid, is clearly evident. Superposed on this motion is
a sequence of random displacements arising from hydrodynamic interactions. Sooner
or later these random displacements lead to an instantaneous position just outside the
blob, where the streamlines sweeping it round the blob surface are no longer closed
(as they are inside), but rather extend upwards to infinity. Once the particle falls a
little behind the faster moving blob, it never catches up again, and so is lost.
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Figure 4. Trajectories of two particular particles from a representative simulation with N = 160
and ε = 0.05 (so that ϕ = 0.02 at T = 0) illustrating transfer across the blob boundary: (a) and (b)
represent two orthogonal views of the trajectory of one particle, and (c) and (d) those of another
particle.

4. A correlation for the rate of particle leakage from the blob

Having now a picture of the mechanism of the break-up of a blob, we consider
whether the data provided by the numerical simulations can be represented analyti-
cally. We seek in particular an analytical relation for the rate at which particles are
lost from a blob. It is evident, as a beginning, that the velocity of fall of a blob (Vb)
is a general rate-determining factor, in which case

1

Vb

dNb

dt
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is a quantity with the dimensions of reciprocal length (Nb being dimensionless) and
only a weak dependence on time. And if, as we may expect, the unsteadiness of the
velocity of particles near the interface is local in character, a relevant unit of length
is the mean particle spacing d = (4π/3Nb)

1/3R. We are led therefore to postulate that

− dNb

dt
= K

Vb

d
(4.1)

where K represents a numerical coefficient to be determined. The last column in table
1 lists the values of K needed to reproduce the rates of particle leakage observed in
the simulations. It appears that this coefficient is roughly constant over the significant
ranges of particle volume fraction ϕ and number of particles N covered by the table,
suggesting that our assertion is sound. We conclude that the break-up process can
be quantified to reasonable accuracy by equation (4.1) with K ≈ 0.08, although this
value is subject to some uncertainty.

Since Vb is dominated by the the first (H-R) term in equation (3.1), the right-hand
side of equation (4.1) is well approximated by substituting 6

5
Nbεu0 for Vb. The rate of

leakage of particles may then be rewritten in an alternative way, namely

− dNb/dt ≈ const. u0 R
2 a/d4, (4.2)

which is physically revealing. We have supposed that the leakage of particles is local
in character. If this is indeed so, then the rate of transfer across a portion of the
blob surface should be proportional to the area of that portion, making the total rate
of leakage proportional to the blob surface area 4πR2. Moreover, because it derives
from random velocity fluctuations, the rate of leakage of particles should scale with
the magnitude of these fluctuations, which is O(u0). Both of these expectations are
reflected in equation (4.2).

Our rate expression has the feature that if Nb increases and ε decreases in such a
way as to keep the particle volume fraction ϕ constant, then dϕ/dt (as opposed to

dNb/dt) tends to zero (as N
−2/3
b ). In other words, the rate of change of excess mass

vanishes as the excess mass is discretized more and more finely.
We have already noted the correspondence between a sedimenting cloud of heavy

particles and a sedimenting drop of heavy fluid (with density ρ = ϕρp + (1 − ϕ)ρ,
viscosity µ ≈ µ, and vanishing interfacial tension). A spherical fluid drop has no
tendency to deform and falls with a constant speed given by the H-R formula. The
fact that the cloud of particles has small random deviations from radial symmetry
suggests a connection with fluid drops that start out with slightly non-spherical
shapes. Such drops (with vanishing interfacial tension) often develop tails (see e.g.
Stone 1994, figure 10). It appears to be an inherent feature of the flow engendered
by sedimentation of excess mass that the drop may become elongated at the rear.
In comparing the particulate cloud with a fluid drop it is important to take note of
essential differences in the mechanisms by which excess mass is left behind in the
form of a tail. A liquid drop has constant density, so the loss of mass is necessarily
accompanied by a decrease in its size; this loss arises from a non-random flow
process. In contrast, we observe that a cloud of particles maintains roughly constant
size, so the loss of mass is accompanied by a decrease in its density; this loss arises
from random outgoing transport across the interface. Both mechanisms might be
operative to a significant extent in the evolution of a cloud comprising very many
small particles, because the rate of change of excess mass arising from the latter
random process tends to zero as the excess mass is discretized more and more finely.

Kao & Mason (1975) and Powell & Mason (1982) have studied experimentally the
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1 cm

Figure 5. Representative photographs of blobs containing glass particles sedimenting
through glycerine.

break-up of highly concentrated initially spherical aggregates of particles in some two-
dimensional linear ambient flows, including the cases of pure elongation and simple
shear. The aggregates are observed to remain roughly spherical for a time, with
some accumulation of particles at opposite sides of the sphere, and later to become
elongated by mechanisms that differ between the two flows. While the aggregate
remains spherical, the rate at which particles leak away is correlated roughly by an
expression which can be written in our notation in the form

− dNb/dt = const. (γa)R2 a−3, (4.3)

where γ denotes the shear rate, R the aggregate radius and a the particle radius.
Given the high concentrations of particles employed, it is not surprising that the
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average particle spacing d = O(a) is not distinguishable from a as a parameter upon
which the rate of leakage might depend. The factors a−3 and a/d4 respectively
appearing in equations (4.2) and (4.3) may therefore be considered to be identical. It
is then noteworthy that these two expressions have the same form, both indicating
that −dNb/dt is proportional to the blob surface area and to velocities (u0 and γa,
respectively) having the order of magnitude of particle velocity fluctuations. Mason
and coworkers regarded it as a basic fact that the rate at which particles leak away
from a blob is proportional to its surface area. It is worth noting that these authors
observe their aggregates to become smaller as they lose particles, in contrast to our
sedimenting blob, for which the size remains roughly constant and the particle volume
fraction decreases.

5. Some photographs of a falling blob
A description of the intriguing shedding of particles from a falling blob has

emerged from the numerical experiments. We have sought to confirm this description
by appealing to some real (physical) experiments. To this end, we employed a small
Plexiglas-walled tank (interior cross-section 10 cm by 10 cm, height 21 cm) filled
to a depth of 16 cm with nearly pure glycerine (viscosity µ ≈ 7–8 g cm−1 s, density
ρ ≈ 1.2 g cm−3) to observe the settling of blobs of spherical glass particles. The
particles had diameters around 0.9 mm, with some polydispersity (0.05 mm standard
deviation), and were observed to settle individually at speeds of roughly 0.06 to
0.1 cm s−1, which corresponds to a Reynolds number of order 10−3 and a Stokes
number of order 10−4. Blobs were formed by pre-wetting the particles with glycerine
and then carefully pushing a small drop of the resulting dispersion onto the liquid
surface from a spoon clamped 2–3 cm above the surface. Smallish blobs generated
in this way had diameters around 0.7 cm and typically settled with speeds of about
0.6 to 2 cm s−1, which correspond to blob Reynolds numbers less than about 0.25.
The particle and blob Reynolds numbers thus were sufficiently small to satisfy the
condition for Stokes flow needed for applicability of the numerical analysis. The actual
blobs were concentrated, not dilute, and their initial shapes (being uncontrolled) were
not as nearly spherical as those simulated numerically.

As in the numerical calculations, falling blobs were observed to remain cohesive,
to maintain roughly constant size, and to shed particles sporadically in a line trailing
from the rear. Figure 5 shows representative photographs of a number of these blobs,
which have a general appearance very similar to those shown in figure 1. The streaks
of fluid faintly visible behind the blobs (distinct from the particle tails) may represent
surface contaminants (e.g. water adsorbed from the atmosphere) dragged into the
liquid when the blob splashed through the surface.

The authors are pleased to thank Dr E. J. Hinch for useful and enlightening
discussions regarding the numerical simulations, and Mark Hallworth for his help
and advice on the experimental set-up. Support from the US National Science
Foundation is gratefully acknowledged.
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